The projection of a vector $\vec r\, = \,3\hat i\, + \,\hat j\, + \,2\hat k$ on the $xy$ plane has magnitude

  • A

    $3$

  • B

    $4$

  • C

    $\sqrt {14} $

  • D

    $\sqrt {10} $

Similar Questions

For component of a vector $A =(3 \hat{ i }+4 \hat{ j }-5 \hat{ k })$, match the following colum.
Colum $I$ Colum $II$
$(A)$ $x-$axis $(p)$ $5\,unit$
$(B)$ Along another vector $(2 \hat{ i }+\hat{ j }+2 \hat{ k })$ $(q)$ $4\,unit$
$(C)$ Along $(6 \hat{ i }+8 \hat{ j }-10 \hat{ k })$ $(r)$ $0$
$(D)$ Along another vector $(-3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ $(s)$ None

For the given vector $\vec A =3\hat i -4\hat j+10\hat k$ , the ratio of magnitude of its component on the $x-y$ plane and the component on $z-$ axis is

Three forces acting on a body are shown in the figure. To have the resultant force only along the $y-$ direction, the magnitude of the minimum additional force needed is.........$N$ 

A displacement vector of magnitude $4$ makes an angle $30^{\circ}$ with the $x$-axis. Its rectangular components in $x-y$ plane are .........

The resultant of two vectors $\vec{A}$ and $\vec{B}$ is perpendicular to $\overrightarrow{\mathrm{A}}$ and its magnitude is half that of $\vec{B}$. The angle between vectors $\vec{A}$ and $\vec{B}$ is . . . . . . 

  • [JEE MAIN 2024]